LangGraphのQuickstartをgpt-ossで動かす手順
LangGraphのQuickstartをgpt-ossで動かしてみたので、その手順のメモです。
Quickstart | LangGraph | LangChain Docs
https://docs.langchain.com/oss/python/langgraph/quickstart
llama.cppのインストールとAPIサーバの実行
llama.cppのインストールは、次のページを参照してください。
llama.cpp | ggml-org/llama.cpp | GitHub
https://github.com/ggml-org/llama.cpp/blob/master/docs/install.md
macosでhomebrewを使っている場合は、次のコマンドでinstallとAPIサーバの起動ができます。
$ brew install llama.cpp
$ llama-server -hf ggml-org/gpt-oss-20b-GGUF --port 1337 --jinja
Quickstartのコードを実行
作業ディレクトリの作成と、依存するパッケージをインストールします。
$ mkdir langgraph-gpt-oss-study && cd $_
$ python -m venv .venv
$ . .venv/bin/activate
$ pip install --pre -U langgraph langchain langchain-openai
Quickstartに掲載されているコードのinit_chat_model部分を
次のように置き換えたコードを用意します。
※コード全体はこのエントリの末尾に掲載
置き換え前:
llm = init_chat_model(
"anthropic:claude-sonnet-4-5-20250929",
temperature=0
)
置き換え後:
llm = init_chat_model(
"openai:gpt-oss-20b",
temperature=0
)
置き換えたコードをmain.pyとして、以下のように実行します。
$ export OPENAI_API_KEY=DUMMY
$ export OPENAI_API_BASE=http://127.0.0.1:1337
$ python main.py
実行結果(抜粋)
$ python main.py
================================ Human Message =================================
Add 3 and 4.
================================== Ai Message ==================================
Tool Calls:
add (OEKm6npczA23Cwm0os2kSY18GYMeAkQx)
Call ID: OEKm6npczA23Cwm0os2kSY18GYMeAkQx
Args:
a: 3
b: 4
================================= Tool Message =================================
7
================================== Ai Message ==================================
7
以上。
資料: main.pyのコード全体
main.py
# ---- Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
llm = init_chat_model(
"openai:gpt-oss-20b",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply a and b.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds a and b.
Args:
a: first int
b: second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide a and b.
Args:
a: first int
b: second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)
# ---- Step 2: Define state
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
# ---- Step 3: Define model node
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
llm_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
# ---- Step 4: Define tool node
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
# ---- Step 5: Define logic to determine whether to end
from typing import Literal
from langgraph.graph import StateGraph, START, END
# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
# ---- Step 6: Build agent
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
#from IPython.display import Image, display
# Show the agent
#display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()



