LangGraphのQuickstartをgpt-ossで動かしてみたので、その手順のメモです。

Quickstart | LangGraph | LangChain Docs
https://docs.langchain.com/oss/python/langgraph/quickstart

llama.cppのインストールとAPIサーバの実行

llama.cppのインストールは、次のページを参照してください。

llama.cpp | ggml-org/llama.cpp | GitHub
https://github.com/ggml-org/llama.cpp/blob/master/docs/install.md

macosでhomebrewを使っている場合は、次のコマンドでinstallとAPIサーバの起動ができます。

$ brew install llama.cpp
$ llama-server -hf ggml-org/gpt-oss-20b-GGUF --port 1337 --jinja

Quickstartのコードを実行

作業ディレクトリの作成と、依存するパッケージをインストールします。

$ mkdir langgraph-gpt-oss-study && cd $_
$ python -m venv .venv
$ . .venv/bin/activate
$ pip install --pre -U langgraph langchain langchain-openai

Quickstartに掲載されているコードのinit_chat_model部分を
次のように置き換えたコードを用意します。
※コード全体はこのエントリの末尾に掲載

置き換え前:

llm = init_chat_model(
    "anthropic:claude-sonnet-4-5-20250929",
    temperature=0
)

置き換え後:

llm = init_chat_model(
    "openai:gpt-oss-20b",
    temperature=0
)

置き換えたコードをmain.pyとして、以下のように実行します。

$ export OPENAI_API_KEY=DUMMY
$ export OPENAI_API_BASE=http://127.0.0.1:1337
$ python main.py

実行結果(抜粋)

$ python main.py                                           
================================ Human Message =================================

Add 3 and 4.
================================== Ai Message ==================================
Tool Calls:
  add (OEKm6npczA23Cwm0os2kSY18GYMeAkQx)
 Call ID: OEKm6npczA23Cwm0os2kSY18GYMeAkQx
  Args:
    a: 3
    b: 4
================================= Tool Message =================================

7
================================== Ai Message ==================================

7

以上。

資料: main.pyのコード全体

main.py

# ---- Step 1: Define tools and model

from langchain.tools import tool
from langchain.chat_models import init_chat_model

llm = init_chat_model(
    "openai:gpt-oss-20b",
    temperature=0
)


# Define tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def divide(a: int, b: int) -> float:
    """Divide a and b.

    Args:
        a: first int
        b: second int
    """
    return a / b


# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)


# ---- Step 2: Define state

from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator

class MessagesState(TypedDict):
    messages: Annotated[list[AnyMessage], operator.add]
    llm_calls: int


# ---- Step 3: Define model node
from langchain.messages import SystemMessage
def llm_call(state: dict):
    """LLM decides whether to call a tool or not"""

    return {
        "messages": [
            llm_with_tools.invoke(
                [
                    SystemMessage(
                        content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
                    )
                ]
                + state["messages"]
            )
        ],
        "llm_calls": state.get('llm_calls', 0) + 1
    }


# ---- Step 4: Define tool node

from langchain.messages import ToolMessage

def tool_node(state: dict):
    """Performs the tool call"""

    result = []
    for tool_call in state["messages"][-1].tool_calls:
        tool = tools_by_name[tool_call["name"]]
        observation = tool.invoke(tool_call["args"])
        result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
    return {"messages": result}


# ---- Step 5: Define logic to determine whether to end

from typing import Literal
from langgraph.graph import StateGraph, START, END

# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
    """Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""

    messages = state["messages"]
    last_message = messages[-1]
    # If the LLM makes a tool call, then perform an action
    if last_message.tool_calls:
        return "tool_node"
    # Otherwise, we stop (reply to the user)
    return END

# ---- Step 6: Build agent

# Build workflow
agent_builder = StateGraph(MessagesState)

# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)

# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
    "llm_call",
    should_continue,
    ["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")

# Compile the agent
agent = agent_builder.compile()

#from IPython.display import Image, display
# Show the agent
#display(Image(agent.get_graph(xray=True).draw_mermaid_png()))

# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
    m.pretty_print()